EVALUATION OF FOUR SUGARCANE MODELS FOR SIMULATING CLIMATE CHANGE IMPACTS AT SITES IN SEVEN COUNTRIES

Jones MR1, Thorburn P2, Biggs J2, Singels A1, Marin F3, Martine J-F4, Liu D5, Royce F6, Morgan KT6, Chinorumba S7, Viator R8 and Nunez O9

1South African Sugarcane Research Institute (SASRI)
2Commonwealth Scientific and Industrial Research Organisation (CSIRO)
3University of Sao Paulo
4Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD)
5University of Florida
6Zimbabwe Sugar Association Experiment Station
7Ingenio San Carlos

\textbf{Introduction}

- Realistic assessment of future climate change impacts on sugarcane production is essential for strategic planning, and accurate crop simulation models are important tools in this process.
- The AgMIP Sugarcane Model Intercomparison Project seeks to assess the suitability of sugarcane models for simulating sugarcane growth and yield under a wide range of environments across the globe under current and possible future climates.
- This poster reports on project protocols and recent outcomes.

\textbf{Protocols & methods}

- High-quality sugarcane growth analysis datasets were provided by research groups in seven countries:
 - Maun, USA (flood irrigated, plant and ratoon crops, 3 N-levels)
 - Piracicaba, Brazil (10 month cycle; 3 treatments: row and dryland)
 - Komatipoort, South Africa (dryland, 18 month cycle; 8 treatments; harvest date)
 - Chiredzi, Zimbabwe (flood irrigated, 12 month cycle; 2 varieties, 3 crops)
 - Ayr, Australia (flood irrigated, 15/13 month cycle; 6 treatments; 2 crops, 3 N levels)
 - La Mercy, South Africa (dryland: 18 month harvest age, 8 harvest dates)
 - Houma, USA (dryland: 14 month cycle)

- Each dataset is simulated by several modelling groups, with the following models represented: APSIM-Sugar, DSSAT-Canegro, Mosicas and Qcane.
- In some cases, different versions of models were used, and/or the same models were operated by different users (e.g. A1, A2).
- Tasks are arranged into stages within phases according to the diagram below:

\textbf{Results: sample sensitivity analysis}

- Sensitivity analysis was performed with a single model and treatment per site in order to demonstrate the process.
 - The irrigated sites showed minimal response to changes in rainfall and CO\textsubscript{2} (e.g. labelled series in the chart), while the rainfed sites responded to these and temperature (labelled series).
 - Interestingly, all sites except San Carlos appear currently sub-optimal in terms of temperature, with yield increases simulated for all sites in the +2 °C category. Yields decreased with larger temperature increments, however.
 - Model behavior is deemed broadly consistent with current knowledge and theory, but comparison with other models will be more definitive.

\textbf{Insights}

- Model ensembles not as good a predictor as expected.
- Improvement from accessing phenology information not as great as anticipated (e.g. Stalk dry mass root mean squared error (RMSE) decreased 10% from Stage 1 to 2, but sucrose RMSE increased 2%).
- Modellers take very different approaches to calibration (e.g. changing RUE vs. modifying soil parameters).
- Global model testing in diverse environments / production scenarios, rather than local testing, is necessary to avoid model-fitting by unwarranted parameter adjustments.